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Abstract. We study the shear horizontal and sagittal elastic waves in polytype superlattices,
formed by the periodic repetition of three different constituent materials. We use the surface
Green function matching method forN non-equivalent interfaces in order to obtain the dispersion
relations and the density of states. In this way it is possible to obtain the spatial localization of
the different modes. The influence of the variation of the thickness of the constituent materials
on the dispersion relation of the elastic modes is studied.

1. Introduction

The study of elastic waves in superlattices has been a subject of interest in the last ten
years [1–10]. Elastic waves have also been studied in semi-infinite superlattices [11–14].
In the case of binary superlattices as in the most common types of heterostructure one must
solve a matching problem at the physically distinct interfaces. The control now achieved
in the growth of heterostructures, by means of different techniques, has made possible the
existence of more complicated heterostructures of interest for which it is necessary to match
at a larger numberN of non-equivalent interfaces. Some examples of these systems are an
arbitrary sequence of wells and barriers, a digital quantum well, a polytype superlattice or
a multilayer system of Thue–Morse or Fibonacci type.

It is then possible to consider the elastic waves in the polytype superlattices which are
the natural extension of the binary ones. Here we shall study the periodic repetition of three
slabs of different materials with their corresponding thicknesses. Powerful tools to study
not only the dispersion relations, but also the density of states and related functions, are
provided by Green function methods. Among these, the surface Green function matching
(SGFM) method [15] has proved to be very useful to study systems with one or several
interfaces. Quite recently an extension of this formalism to deal with structures withN > 2
non-equivalent interfaces has been presented for continuous systems where the problem is
formulated in terms of differential equations [16].

We shall consider here superlattices formed by three different materials, considered as
isotropic, and we shall study the shear horizontal and sagittal elastic waves of these systems.
We shall obtain the dispersion relations and we shall study the influence of the variation
of the thicknesses of the constituent materials on them. We shall also study the spatial
localization of the different modes.

In section 2 we present the essentials of the formalism together with the study of the
shear horizontal elastic waves, whose dispersion relation can be obtained in closed form.
In section 3 we study the sagittal elastic waves. The conclusions are presented in section 4.
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2. Transverse elastic waves

The details of the formalism have been presented elsewhere [16] and need not be repeated
here. We shall only give here the formulae needed to study our problem. We shall consider
here a superlattice formed by three different materials with thicknessesd1, d2 and d3,
d = d1 + d2 + d3 being the period of the superlattice. We shall also consider the materials
as elastically isotropic, thus being described by their respective mass densitiesρi , and Laḿe
coefficientsλi , µi (i = 1, 2, 3). These approximations are performed for simplicity in order
to obtain the basic information with the fewest complications possible. It is clear that more
constituent materials and elastic anisotropy can be included without any formal problem,
but the numerical calculations would be heavier.

The dispersion relation for the superlattice is obtained from the zeros of the determinant
of

G̃−1
s = −I

(
Ã−1

1 G̃−1
1 −

3∑
j=2

Ã−1
j G̃−1

j

)
I (1)

whereI is the total surface projector

I =
3∑

j=1

ij (2)

ij being the unit projectors on the different interfaces. In the matrix representationI is the
N × N unit supermatrix matrix. Thus in the supermatrix format ofI, the partial projector
ij has unity in thej th diagonal element and zero elsewhere. The elements entering (1) are
defined in the following way:

G̃1 =
[ 〈i1|G1|i1〉 f −1〈i1|G1|im〉

f 〈iN |G1|in〉 〈iN |G1|iN 〉
]

Ã1 =
[ 〈i1|A(−)

1 |i1〉 f −1〈i1|A1|im〉
−f 〈iN |A1|in〉 −〈iN |A(+)

1 |iN 〉
] (3)

(N = 3, andn andm are the interfaces shown in figure 1). In figure 1Pµ (µ = 2, 3, . . . , N)
are the projectors of domainµ, as usual in the SGFM method, andPL and PR are the
projectors of domainsL and R respectively. The interfacesiN and im are physically
identical, as arein and i1. Then the amplitudes atiN/in are equal to those atim/i1 except
for the phase factorf = exp(iqd), whereq is the superwavevector associated with the
superperiodd.

G̃j =
[ 〈j − 1|Gj |j − 1〉 〈j − 1|Gj |j〉

〈j |Gj |j − 1〉 〈j |Gj |j〉
]

Ãj =
[ 〈j − 1|A(+)

j |j − 1〉 〈j − 1|Aj |j〉
−〈j |Aj |j − 1〉 −〈j |A(−)

j |j〉
]

.

(4)

In order to calculate the density of states we shall need the diagonal elements of the
Green function of the whole system [15, 16], which in our case are given by

Gs(z, z) = Gj(z, z) + Gj(z, Ij )
˜G−1
j (G̃s − G̃j )

˜G−1
j Gj (Ij , z) (5)

j = 1, 2, 3, Ij = ij−1 + ij . Ij has unity in the (j − 1)th andj th diagonal elements and zero
elsewhere.
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Figure 1. A polytype superlattice. The period consists ofG1 − G2 − · · · − GN . The interfaces
im, in are physically identical toiN , i1, respectively. The superlattice period isd.

In the case of shear horizontal modes in the polytype superlattices the elements in (3)
and (4) are

G̃1 = 1

2µ1βT,1

[ 1 0 f −1 e−βT,1d1

0 0 0
f e−βT,1d1 0 1

]

G̃2 = 1

2µ2βT,2

[ 1 e−βT,2d2 0
e−βT,2d2 1 0

0 0 0

]

G̃3 = 1

2µ3βT,3

[ 0 0 0
0 1 e−βT,3d3

0 e−βT,3d3 1

]
(6)

and

Ã1 = −1

2

[ 1 0 −f −1 e−βT,1d1

0 0 0
−f e−βT,1d1 0 1

]

Ã2 = 1

2

[ 1 −e−βT,2d2 0
−e−βT,2d2 1 0

0 0 0

]

Ã3 = 1

2

[ 0 0 0
0 1 −e−βT,3d3

0 −e−βT,3d3 1

]
(7)

where, for each constituent medium,

βT =
√

κ2 − ω2ρ

µ
(8)

andκ is the wavevector parallel to the interfaces.
Then (1) is given by

G̃−1
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 (9)
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Figure 2. Dispersion relation of the shear horizontal acoustic waves for a BeO–CdSe–CdS
superlattice having all layers of the same thickness (1000Å), versusκd.

where

Nj = µjβT,j (1 + e−2βT,j dj )

Mj = 2µjβT,j e−βT,j dj

Dj = 1 − e−2βT,j dj

(j = 1, 2, 3).

(10)

After some algebra, this yields the dispersion relation in analytic form:

cos(qd) = cosh(βT,1d1) cosh(βT,2d2) cosh(βT,3d3) + 1

2µ1βT,1µ2βT,2µ3βT,3

×[µ2
2β

2
T ,2 sinh(βT,2d2){µ3βT,3 cosh(βT,3d3) sinh(βT,1d1)

+µ1βT,1 sinh(βT,3d3) cosh(βT,1d1)} + µ2βT,2(µ
2
1β

2
T ,1

+µ2
3β

2
T ,3) cosh(βT,2d2) sinh(βT,1d1) sinh(βT,3d3)

+µ1βT,1µ3βT,3 sinh(βT,2d2){µ3βT,3 cosh(βT,1d1) sinh(βT,3d3)

+µ1βT,1 sinh(βT,1d1) cosh(βT,3d3)}]. (11)

It can be easily verified that when media 2 and 3 are equal this yields the dispersion
relation for shear horizontal waves in the standard 1–2 superlattice [1].

In order to study some practical cases we have chosen four materials which very
approximately satisfy the isotropic limit. The elastic coefficients and mass densities of
these materials are given in table 1.



Elastic waves in polytype superlattices 6535

Figure 3. As in figure 2, but for a BeO–CdSe–ZnO superlattice.

Table 1. Mass densities and elastic coefficients employed in our calculations.

ρ (g cm−3) λ (1010 dyn cm−2) µ (1010 dyn cm−2)

BeO 3.010 470 153
CdSe 5.684 74.90 13.15
CdS 4.824 84.31 14.58
ZnO 5.676 194 46

In figure 2 we present the dispersion relation for the shear horizontal modes of a BeO–
CdSe–CdS superlattice withd(BeO) = d(CdSe) = d(CdS) = 1000 Å. We have seen that
the forbidden frequency gaps are smaller in this case than for the binary superlattices. This
is more pronounced in the case of lower frequencies. This is due to the fact that the velocity
of the bulk transverse waves is much higher for BeO than for the other two materials which
have more similar velocities. In figure 3 we represent the dispersion relation for the shear
horizontal modes of a BeO–CdSe-ZnO superlattice in which the thicknesses of the different
layers are also the same and equal to 1000Å. In this case the velocities in the different
materials are quite different and some gaps are now evident at lower frequencies. The
existence of smaller gaps than in the case of binary superlattices is a consequence of the
interplay of more bulk velocities and the consequent multiple folding.
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3. Sagittal elastic waves

We shall pass now to the more complicated case of the sagittal elastic waves in a polytype
superlattice. In this case theG andA entering (3) and (4) are 2× 2 matrices given by

Gj = 1

2ρjω2

[
βT,j e−βT,j |z−z′| − κ2

βL,j
e−βL,j |z−z′|

sgn(z − z′)iκ(e−βT,j |z−z′| − e−βL,j |z−z′|)

sgn(z − z′)iκ(e−βT,j |z−z′| − e−βL,j |z−z′|)
βL,j e−βL,j |z−z′| − κ2

βT,j
e−βT,j |z−z′|

]
(12)

Aj = 1

2ω2

[
sgn(z − z′)[2t2

j κ2 e−βL,j |z−z′| − Fj e−βT,j |z−z′|]
iκ

βL,j
[Ej e−βT,j |z−z′| − Fj e−βL,j |z−z′|]
iκ

βT,j
[Ej e−βL,j |z−z′| − Fj e−βT,j |z−z′|]

sgn(z − z′)[2t2
j κ2 e−βT,j |z−z′| − Fj e−βL,j |z−z′|]

]
(13)

where

Ej = 2t2
j βT,jβL,j Fj = 2t2

j κ2 − ω2 t2
j = µj

ρj

βL,j =
√

κ2 − ω2ρj

(λj + 2µj)
.

(14)

It is then clear that (1) takes the form in this case of a 6× 6 matrix, and there is no
possibility of obtaining the dispersion relation in closed form as for the shear horizontal
waves. The study of the dispersion relation in the present case must be done in a purely
numerical way. This can be done by looking to the zeros of the determinant of (1). This
would be quite similar to the procedure employed in [2] of diagonalization of the transfer
matrix. The relationship between transfer matrices and the SGFM method was established
in [17, 18]. As we shall be interested in the study of the spatial localization we shall proceed
in a different way to obtain the dispersion relations. The eigenvalues will be obtained from
the peaks (corresponding toδ functions) in the imaginary part of the trace of the interface
projection of the Green function of the matched systemG̃s . A small imaginary part of
0.001 GHz was added to the real frequency variable, in order to perform the numerical
calculations.

We shall combine in our study the influence of the constituent materials and of the
relative thicknesses of the different layers on the dispersion relation of the sagittal elastic
waves.

Figure 4(a) presents the dispersion relation of the sagittal elastic waves for the same
superlattice as considered in figure 2. The same conclusions are evident here. Figure 4(b)
corresponds to the same superlattice but withd(BeO) = 2d(CdSe) = 2d(CdS) = 2000 Å.
In this case the lowest-frequency range is only slightly affected, but at higher frequencies
wider gaps open now. Figure 4(c) presents results for thed(BeO) = 4d(CdSe) =
4d(CdS) = 4000 Å case. Here we have also the wider gaps observed in figure 4(b) and
some effects also at low frequencies and higher values ofκ. Figure 4(d) presents results
for the d(CdS) = 2d(BeO) = 2d(CdSe) = 2000 Å case. In this case the situation is very
similar to that presented in figure 4(a), exhibiting some wider gaps at higher frequencies
and minor changes at lower frequencies and higher values ofκd.

In figure 5 we present the dispersion relation for a BeO–CdSe-ZnO superlattice, with all
layers having the same thickness equal to 1000Å. In this case, as for the shear horizontal
waves, the differences are most evident, although not spectacular for the different ranges of
frequencies.
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(a) (b)

(c) (d)

Figure 4. Dispersion relation of the sagittal elastic waves for a BeO–CdSe–CdS superlattice.
(a) havingd1 = d2 = d3 = 1000 Å; (b) having d1 = 2d2 = 2d3 = 2000 Å; (c) having
d1 = 4d2 = 4d3 = 4000Å and (d) havingd3 = 2d1 = 2d2 = 2000Å.
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Figure 5. As in figure 4 for a BeO–CdSe–ZnO superlattice withd1 = d2 = d3 = 1000Å.

In figure 6(a) we present the dispersion relation for a BeO–CdSe superlattice with all
the layers having a thickness equal to 1500Å. Figure 6(b) gives the dispersion relation for
the same superlattice but now with all layers having a thickness equal to 1000Å. We can
see now the effects introduced by the third component of the superlattice when comparing
with figures 4(a) and 5. Figure 6(a) gives the results for a binary superlattice having the
same period as those represented in figures 4(a) and 5. It can be seen that the broader gaps,
covering all theκd region considered here, existing in the three-component superlattices
are narrower than those found in the binary superlattices. This is also evident in figure 6(b)
where the binary superlattice has the same thickness for the BeO–CdSe layers as in the
three-component superlattices. The modifications introduced by the third constituent in the
polytype superlattices are then evident. It can be also seen in figure 6(a) that the number of
dots, representing the values of the wavevector along the [001] direction which contribute
to the dispersion relation, increases when compared with those in figure 6(b). This is related
to the increase of the superlattice period and the band folding.

In figure 7(a) we present the spectral strength of a mode of the BeO–CdSe–CdS
superlattice studied in figure 4(a) corresponding toq = 0 cm−1, κd = 2.5 × 104 cm−1

andω = 5.55 GHz. The spectral strength was obtained by calculation of the local density
of states at the different values ofz in the superlattice period, which is directly obtained
from the Green function of the whole system given by (5). It can be seen that the mode
is preferentially localized in the BeO layer, but it exhibits its maxima at the interfaces of
the BeO and the other constituent materials. It is then clear that this mode comes from
the BeO bulk band structure. Similar localizations can be observed in binary superlattices
[5]. Figure 7(b) shows the spectral strength of a mode of the same superlattice having
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(a) (b)

Figure 6. Dispersion relation of the sagittal elastic waves for a BeO–CdSe superlattice.
(a) havingd1 = d2 = 1500Å; (b) havingd1 = d2 = 1000Å.

q = 0 cm−1, κd = 2.5 × 104 cm−1 andω = 50.75 GHz. In this case the mode has almost
no strength in the BeO layer, but exhibits strong and very similar strengths in the CdSe and
CdS layers. This provides evidence that this mode comes from a bulk frequency allowed
in both CdSe and CdS. This can be easily understood by remembering that these materials
have very similar bulk velocities for the elastic waves.

It is clear that with these systems we open the possibilities of more varied localization
patterns by choosing with care the elastic parameters of the constituent materials.

4. Conclusions

We have studied the shear horizontal and sagittal elastic waves in polytype superlattices
formed by the periodic repetition of three different istropic materials. The main feature
is the reduction in the size of the gaps appearing in the dispersion relations as compared
with the case of normal superlattices formed by only two different materials. This is due
in part to the multiple folding of more band structures, but also to the interplay of a richer
combination of possibilities on the different band structures. Changing the thickness of the
constituent materials allows the opening of wider gaps at lower frequencies and low values
of κd, while modifying also the low-frequency region at higher values ofκd. Similar
effects are obtained by changing the constituent materials, although no drastic changes have
been obtained with the different combinations of the materials employed in our calculations,
whose elastic coefficients satisfy very closely the conditions of elastic isotropy. The spatial
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(a)

(b)

Figure 7. Spatial dependence of the mode strength (local density of states) for sagittal
acoustic modes of a BeO–CdSe–CdS superlattice with all layers having 1000Å thickness.
(a) q = 0 cm−1, κ = 2.5 × 104 cm−1, ω = 5.55 GHz; (b)q = 0 cm−1, κ = 2.5 × 104 cm−1,
ω = 50.75 GHz. Same conventions as in figure 4.
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localization of the different modes shows qualitatively the same behaviours as observed
in binary superlattices. The presence of more constituent materials allows for a richer
localization pattern when combining relative thicknesses and materials with similar or very
different elastic properties, at the different frequency ranges.
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[16] Pérez-Alvarez R, Garcı́a-Moliner F and Velasco V R 1995J. Phys.: Condens. Matter7 2037
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